
Consumer-Driven Contracts
Markus Knittig

@mknittig

Agenda

● Fundamentals
● How CDC works
● What CDC can do and not do

Service-oriented Architecture

Microservices

Microservices Architecture

Service Consumer

Service Provider

Provider Contracts

● Document schemas
● Interfaces
● Conversations
● Policy
● Quality of service characteristics

… and Consumer Contracts?

Consumer-Driven

Contracts

Pact and Spring Cloud Contracts
to the rescue!

Example with Spring Cloud Contracts

Example with Pact
animal_service.given("an alligator named Mary exists").

 upon_receiving("a request for an alligator").

 with(

 method: "get",

 path: "/alligators/Mary",

 headers: {"Accept" => "application/json"}).

 will_respond_with(

 status: 200,

 headers: {"Content-Type" => "application/json"},

 body: {

 name: "Mary",

 dateOfBirth: Pact.term(

 generate: "02/11/2013",

 matcher: /\d{2}\/\d{2}\/\d{4}/)

 })

Overview with Spring Cloud Contracts

Consumer view with Pact

Provider view with Pact

Should I use Pact or Spring Cloud
Contracts?

Simple: Use Spring Cloud Contracts if
you want to test Spring (Boot) projects

(you can consume Pact files too)

Pact Implementations

Share contracts

Pact Broker

● Matrix of compatible consumer/provider versions
● Tagging of Pact versions e.g. “production”,

“feature-branch”
● Hooks when Pact changes e.g. run provider verifications
● Provider verification results
● Diffs between Pact versions
● And some more...

Pact Broker Index

Pact Broker Contract Details

Pact Broker Dependency Graph

(Possible) CDC Flow

Contract Tests vs Functional Tests

Consumer-Driven Contracts

Given "there is no user called Mary"

When "creating a user with username Mary"

 POST /users { "username": "mary", email: "...", ... }

Then

 Expected Response is 200 OK

Given "there is already a user called Mary"

When "creating a user with username Mary"

 POST /users { "username": "mary", email: "...", ... }

Then

 Expected Response is 409 Conflict

When "creating a user with a username with 21 characters"

 POST /users { "username": "thisisalooongusername", email: "...",... }

Then

 Expected Response is 400 Bad Request

 Expected Response body is { "error": "username cannot be more than 20

characters" }

When "creating a user with a username containing numbers"

 POST /users { "username": "us3rn4me", email: "...", ... }

Then

 Expected Response is 400 Bad Request

 Expected Response body is { "error": "username can only contain

letters" }

Given that username "bad_username" is invalid

When "creating a user with an invalid username"

 POST /users { "username": "bad_username", ... }

Then

 Response is 400 Bad Request

 Response body is { "error": "<any string>" }

CDC vs. Swagger

CDC vs. JSON Schema

Where CDC can help
● Good tool for communication about

interfaces between consumer and provider
● Simple structure / naming / type checks in

request / response on lower test level
● Simple stubs for the consumer which can be

used to use consumer even if the real
implementation is missing

Do not use CDC...
● ...to replace end-to-end / system tests. “We

have CDC! Why does integration break?”
● ...to test business logic. “For this request I

expect two offerings, for this request one..”
● ...to test (master) data. “I need to ensure all

different currencies are supported.”
● … to test cross-cutting concerns like security,

token handling etc.

CDC Users

Thank you for your attention!
Questions and comments are welcome

Markus Knittig
@mknittig

